Part Number Hot Search : 
IRFZ44V MAX15 74C193 M6001 A58005 MB90341 4HCT0 LB12B
Product Description
Full Text Search
 

To Download FDC636P Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  may 1998 f dc636 p p -channel logic level enhancement mode field effect transistor general description features absolute maximum ratings t a = 25c unless otherwise noted symbol parameter f dc636 p units v dss drain-source voltage -20 v v gss gate-source voltage 8 v i d drain current - continuous (note 1a) -2.8 a - pulsed -11 p d maximum power dissipation ( note 1a) 1.6 w (note 1b) 0.8 t j ,t stg operating and storage temperature range -55 to 15 0 c thermal characteristics r q ja thermal resistance, junction-to-ambient (note 1a) 78 c/w r q jc thermal resistance, junction-to-case (note 1) 30 c/w fdc636 p rev.b these p-channel logic level enhancement mode power field effect transistors are produced using fairchild's proprietary, high cell density, dmos technology. this very high density process is especially tailored to minimize on-state resistance. these devices are particularly suited for low voltage applications such as cellular phone and notebook computer power management and other battery powered circuits where high-side switching, and low in-line power loss are needed in a very small outline surface mount package. - 2.8 a, -2 0 v. ?r ds(on ) = 0.130 w @ v gs = -4.5 v r ds(on ) = 0.18 0 w @ v gs = -2.5 v . supersot tm -6 package design using copper lead frame for superior thermal and electrical capabilities. high density cell design for extremely low r ds(on) . exceptional on-resistance and maximum dc current capability. soic-16 sot-23 supersot t m -8 so-8 sot-223 supersot t m -6 d d d s d g supersot -6 tm .636 pin 1 3 5 6 4 1 2 3 ? 1998 fairchild semiconductor corporation
electrical characteristics (t a = 25c unless otherwise noted) symbol parameter conditions min typ max units off characteristics bv dss drain-source breakdown voltage v gs = 0 v, i d = -250 a -20 v d bv dss / d t j breakdown voltage temp. coefficient i d = -250 a , referenced to 25 o c -22 mv/ o c i dss zero gate voltage drain current v ds = -16 v , v gs = 0 v -1 a t j = 55 o c -10 a i gssf gate - body leakage, forward v gs = 8 v, v ds = 0 v 100 na i gssr gate - body leakage, reverse v gs = -8 v, v ds = 0 v -100 na on characteristics (note 2) v gs (th) gate threshold voltage v ds = v gs , i d = -250 a -0.4 -0.6 -1 v d v gs(th) / d t j gate threshold voltage temp.coefficient i d = -250 a , referenced to 25 o c 2 mv/ o c r ds(on) static drain-source on-resistance v gs = -4.5 v, i d = -2.8 a 0.11 0.13 w t j = 125 o c 0.17 0.21 v gs = -2.5 v, i d = -2.2 a 0.146 0.18 i d (on) on-state drain current v gs = -4.5 v, v ds = -5 v -11 a g fs forward transconductance v ds = -5 v, i d = -2.8 a 4 s dynamic characteristics c iss input capacitance v ds = -10 v, v gs = 0 v, 390 pf c oss output capacitance f = 1.0 mhz 170 pf c rss reverse transfer capacitance 45 pf switching ch aracteristics (note 2 ) t d(on ) turn - on delay time v dd = -10 v, i d = -1 a, 30 48 ns t r turn - on rise time v gs = -4.5 v, r gen = 6 w 26 42 ns t d(off) turn - off delay time 8 16 ns t f turn - off fall time 15 27 ns q g total gate charge v ds = -5 v, i d = -2.8 a, 6 8.5 nc q gs gate-source charge v gs = -4.5 v 0.9 nc q gd gate-drain charge 1 nc drain-source diode characteristics i s continuous source diode current -1.3 a v sd drain-source diode forward voltage v gs = 0 v, i s = -1.3 a (note 2 ) -0.77 -1.2 v notes: 1 . r q ja is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the so lder mounting surface of the drain pins. r q jc is guaranteed by design while r q ca is determined by the user's board design. a. 78 o c/w when mounted on a 1 in 2 pad of 2oz cu on fr-4 board . b . 156 o c/w when mounted on a minimum pad of 2oz cu on fr-4 board. 2. pulse test: pulse width < 300 s, duty cycle < 2.0%. fdc636 p rev.b
fdc636 p rev.b 0 1 2 3 4 5 0 3 6 9 12 15 -v , drain-source voltage (v) -i , drain-source current (a) v = -4.5v gs - 2.5v ds d - 2.0v -3.0v -3.5v 0 3 6 9 12 15 0.8 1 1.2 1.4 1.6 1.8 2 -i , drain current (a) drain-source on-resistance v = -2.5v gs d r , normalized ds(on) -4.5v -3.0v -4.0v -3.5v -5.0v typical electrical characteristics figure 1. on-region characteristics . figure 2. on-resistance variation with drain current and gate voltage . figure 3. on-resistance variation with temperature . figure 5 . transfer characteristics. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0.0001 0.001 0.01 0.1 1 10 -v , body diode forward voltage (v) -i , reverse drain current (a) 25c -55c v = 0v gs sd s t = 125c j figure 4 . on-resistance variation with gate-to -source voltage. -50 -25 0 25 50 75 100 125 150 0.6 0.8 1 1.2 1.4 1.6 t , junction temperature (c) drain-source on-resistance v = - 4.5v gs i = - 2.8a d r , normalized ds(on) j 1 2 3 4 5 0 0.1 0.2 0.3 0.4 0.5 -v ,gate to source voltage (v) r ,on-resistance(ohm) gs d s ( o n ) t = 125c a 25c i = -1.4a d 0 1 2 3 4 0 2 4 6 8 10 -v , gate to source voltage (v) -i , drain current (a) v = -5v ds gs d t = -55c a 125c 25c figure 6 . body diode forward voltage varia tion with source current and temperature.
fdc636 p rev.b figure 10 . single pulse maximum power dissipation. 0.1 0.2 0.5 1 2 5 10 20 20 50 100 200 400 600 1000 -v , drain to source voltage (v) capacitance (pf) ds c iss f = 1 mhz v = 0 v gs c oss c rss figure 8. capacitance characteristics . figure 7 . gate charge characteristics. figure 9. maximum safe operating area. typical electrical characteristics (continued ) 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 q , gate charge (nc) -v , gate-source voltage (v) g gs v = -5v ds -10v i = -2.8a d -15v 0.1 0.2 0.5 1 2 5 10 30 0.01 0.05 0.1 0.5 1 5 10 20 - v , drain-source voltage (v) -i , drain current (a) rds(on) limit d a dc ds 1s 100ms 10ms 1ms v = -4.5v single pulse r =156 c/w t = 25c q ja gs a 100us 0.01 0.1 1 10 100 300 0 1 2 3 4 5 single pulse time (sec) power (w) single pulse r =156c/w t = 25c q ja a 0.00001 0.0001 0.001 0.01 0.1 1 10 100 300 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 t , time (sec) transient thermal resistance r(t), normalized effective 1 single pulse d = 0.5 0.1 0.05 0.02 0.01 0.2 duty cycle, d = t / t 1 2 r (t) = r(t) * r r = 156c/w t - t = p * r (t) a j p(pk) t 1 t 2 q ja q ja q ja q ja figure 11 . transient thermal response curve . thermal characterization performed using the conditions described in note 1b . transient thermal response will change depending on the circuit board design.


▲Up To Search▲   

 
Price & Availability of FDC636P

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X